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Abstract

Contrastive Learning (CL) plays a crucial role in molecular representation learning,
enabling unsupervised learning from large scale unlabeled molecule datasets. It
has inspired various applications in molecular property prediction and drug de-
sign. However, existing molecular representation learning methods often introduce
potential false positive and false negative pairs through conventional graph augmen-
tations like node masking and subgraph removal. The issue can lead to suboptimal
performance when applying standard contrastive learning techniques to molecular
datasets. To address the issue of false positive and negative pairs in molecular repre-
sentation learning, we propose a novel probability-based contrastive learning (CL)
framework. Unlike conventional methods, our approach introduces a learnable
weight distribution via Bayesian modeling to automatically identify and mitigate
false positive and negative pairs. This method is particularly effective because it dy-
namically adjusts to the data, improving the accuracy of the learned representations.
Our model is learned by a stochastic expectation-maximization process, which
optimizes the model by iteratively refining the probability estimates of sample
weights and updating the model parameters. Experimental results indicate that
our method outperforms existing approaches in 13 out of 15 molecular property
prediction benchmarks in MoleculeNet dataset and 8 out of 12 benchmarks in the
QM9 benchmark, achieving new state-of-the-art results on average.

1 Introduction

We investigate the problem of learning representations from molecules, a field known as molecular
representation learning (MRL). MRL has gained significant attention due to its critical role in enabling
learning from limited supervised data for applications such as molecular property prediction [1,2,3]
and drug design [4,5,6]. Molecular representation learning involves creating models that can derive
meaningful and generalizable representations of molecules, which can then be used to enhance
various downstream applications. Among the most common methods in MRL is contrastive learning
(CL), which leverages large-scale unlabeled molecular datasets to learn robust representations. CL
works by contrasting different augmentations of the same molecule to ensure that the model learns to
recognize the essential features of the molecule, thereby improving performance on tasks such as
molecular property prediction and drug design.

With the success of contrastive learning methods in computer vision and multi-modality pretrain-
ing [7,8], various contrastive learning approaches have been proposed for molecular representation
learning. MolCLR [9] introduces a contrastive learning framework specifically for molecular represen-
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tation learning. It employs atom masking and edge removal as data augmentations, which enhances
the performance of Graph Neural Network (GNN) models on a variety of downstream molecular
property prediction benchmarks. In contrast, GraphMVP [10] incorporates both 2D topology and
3D geometry during pre-training, though its downstream tasks primarily utilize 2D topology. These
methods highlight different strategies for applying contrastive learning to molecular data, focusing on
unique aspects of molecular structures to improve learning efficacy.

Although existing works have demonstrated the success of contrastive learning in molecular property
predictions, they still face a significant drawback: the reliability of "positive" and "negative" labels
in augmented molecule pairs. For example, MolCLR [9] uses augmentations like atom masking
and edge removal, which can lead to false negative pairs when molecules with similar structures
and chemical properties are labeled as negatives. Similarly, GraphMVP [10], which incorporates
both 2D topology and 3D geometry, can also mislabel structurally similar augmented molecules
as negatives due to its augmentation processes. These augmentations often remove parts of the
molecular graph, such as nodes, edges, and subgraphs, resulting in potentially incorrect pairings. This
issue is exacerbated by the large volume and extensive augmentations applied to molecular datasets,
naturally leading to numerous falsely aligned pairs.

The fundamental problem lies in the random nature of these augmentations. Existing molecular
contrastive learning methods assign hard positive and negatives to molecule pairs and do not account
for the probabilistic relationships between molecules. Figure 3 provides an example of false positives
and negatives resulting from graph augmentations in MolCLR [9] ,where two distinct graph augmen-
tations are applied to enhance two different molecules. The augmented molecule pair originating
from the same molecule is categorized as positive, while other molecule pairs within the same batch
are considered negative. However, as illustrated in the figure, the correct contrastive learning setup
should consider molecules with structural similarities as positive pairs, even when they originates
from different molecules. In contrast, the same molecule subjected to different augmentation methods
may also be considered negative due to structural dissimilarities. Existing methods like MolCLR [9]
fail to maintain this distinction, where augmented pairs from the same molecule are always treated as
positive, while pairs from different molecules within the same batch are always treated as negative,
regardless of their structural similarity. This mislabeling results in false positives and negatives,
undermining the effectiveness of the contrastive learning process.
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Figure 1: Existing problem in molecular contrastive learning. Adopt node removal and edge
removal for molecular contrastive learning can lead to false positive and false negative problems.
Blue lines indicate positive pairs and yellowing lines indicate negative pairs. The numbers on each
line indicate the chemical similarity between the augmented pair of molecules. In this case, positive
pairs indeed have lower similarity than negative pairs.

To overcome the aforementioned issue, we introduce a generalization of existing contrastive learn-
ing frameworks for molecular representation learning with probabilistic modeling. Our approach
introduces data-pair weights as additional random variables, and dynamically infers optimal weights
to account for false positive and false negative pairs, which can effectively address the mislabeling
problem in previous methods. By incorporating a probability framework, we can effectively manage
the uncertainty in data pair assignments. Specifically, we introduce a novel Bayesian inference

2



methods with Bayesian data augmentation to automatically infer these weights through posterior
sampling. This allows us to optimize the model parameters efficiently using stochastic expectation
maximization.

It is worth mentioning that while MolCLR [9] authors introduced i-MolCLR [45] to address similar
issues by penalizing faulty negatives with a fingerprint-based similarity metric and a motif-level data
augmentation called fragment contrast, our method offers distinct advantages. Unlike i-MolCLR
which relies on direct fingerprint similarity, our approach introduces a novel probabilistic contrastive
learning framework. This framework dynamically infers weight distributions and optimizes through
stochastic expectation maximization, eliminating the need for explicit Tanimoto similarity calculations.
Our method addresses the issue of false negative pairs more fundamentally and efficiently, providing
a more robust solution for molecular contrastive learning.

In addition, our method is flexible and can be applied to different molecular representation learning
framework. In this paper, we first integrate our method into MolCLR [9] series model and benchmark
the performance on 2D non-charality MoleculeNet [11] dataset. We then integrated our method into
Uni-Mol [21] and evaluate its performance on MoleculeNet [11]. We also trained and evaluated our
model on the QM9 [44] dataset, following Equiformer [46]. With molecular property prediction tasks,
we aim to test our model’s ability in extracting useful features from molecular. Extensive experiments
show that our method outperforms all other molecular representation learning baselines, including
contrastive and non-contrastive methods.

The contributions of this paper can be summarized as follows:

• To tackle the challenges posed by false positive and negative pairs, we introduce a probability
method for molecular contrastive learning. By introducing different weights as random
variables to various false positive and negative pairs, we effectively mitigate the impact of
these erroneous pairs on the learning process.

• To optimize our probabilistic contrastive learning framework, we propose a novel and effec-
tive optimization algorithm based on Bayesian data augmentation and stochastic expectation
maximization, to simultaneously perform posterior inference and model optimization.

• Through extensive and large-scale experiments, we demonstrate enhanced performance
across multiple public benchmarks for molecular representation learning, validating the
effectiveness of our proposed method.

2 Methods

2.1 Learning Representations from Molecular Graphs

We begin by elucidating the foundational setup and notation in molecular contrastive learning.
Molecules can be represented as 2D or 3D graphs depending on datasets. 2D molecule graphs have
atoms as nodes and bond as edges. 3D molecule graphs additionally adds spacial positions of the
atoms. For simplicity, we adopt static atom positions in this paper.

In molecular representation learning, as illustrated in Figure 2, we start by randomly sampling a batch
of N molecules. Each molecule, represented as xi, undergoes stochastic augmentation strategies
to generate two augmented versions, denoted as (xi,x

′
i). These augmentations involve methods

such as atom masking, edge perturbation, and subgraph removal, transforming the original molecular
structure while preserving its core characteristics. Among the resulting 2N augmented molecules,
each pair (xi,x

′
i) is treated as a positive pair, while the remaining 2(N − 1) augmented molecules

within the same batch are considered negative samples. This setup allows us to utilize contrastive
learning effectively by distinguishing between similar and dissimilar molecular structures. A neural
network encoder f(x;θ), parameterized by θ, is employed to extract representation vectors z from
the augmented molecular samples. In this paper, we utilize three different types of encoders in various
experiments, as depicted in Figure 2 B, C, and D. These encoders include Graph Neural Networks
(GNNs) and Transformers, each providing unique advantages for capturing the intricate features of
molecular structures.

Let si+ ≜ sim(zi, z
′
i) represent the similarity score between the positive pair (xi,x

′
i) after the

encoder, and sik− ≜ sim (zi, zk) signifies the similarity score between the negative pair (xi,xk),
and sim(·, ·) represents any positive-valued similarity metric. In this paper, we adopt the commonly
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Figure 2: (A) Molecular contrastive learning Molecules are represented as 2D or 3D molecule
graphs. Two stochastic augmentation strategies are applied to each graph, resulting in two aug-
mentations. A feature extractor is used to extract features and contrastive loss is used to maximize
the similarity of positive pairs and minimize the similarity of negative pairs B,C,D: Different ar-
chitectures used as feature extractors in different experiments. (B) Uni-Mol [21] architecture used
in MoleculeNet [11] Dataset experiment. (C) GCN [50] architecture from MolCLR [9] used in
Non-Chirality MoleculeNet [11] experiment. (D) Equiformer [46] architecture used in QM9 [44]
dataset experiment.

used exponential cosine similarity, defined as sim(z1, z2) ≜ ez
T
1 z2/∥z1∥∥z2∥τ , where τ denotes a

temperature parameter.

2.2 Probability Weighted Contrastive Learning

We describe the proposed probability framework for molecular contrastive learning. In standard
contrastive learning, one tries to encode data samples to a latent space such that positive pairs stay
close to each other while negative pairs are pushed away. The contrastive loss function is:

L =
1

N

N∑
k=1

[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)], with ℓ(i, j) = − log
si+

si+ +
∑2N

k=1 I[k ̸=i,j]si,k−

As mentioned, one issue of directly applying the contrastive learning into molecular representation
learning is the potential false positive positive and negative molecular pairs, as discussed in the
introduction. This could confuse the learning, ending up with sub-optimal representations. Is there
a way to automatically identify and differentiate these pair data? In the following, we propose a
Bayesian approach to address this issue that allows the algorithm for automatic inference of the
degree of positiveness and negativeness of data pairs, involving enhancing the standard contrastive
loss by incorporating learnable stochastic weights for all data pairs. To be more specific, we introduce
local learnable weights, denoted as w+

i for each positive pair and w−
ik for each negative pair. We

then define a weighted contrastive loss based on these introduced weights. This modification aims
to mitigate the issues by automatically assigning relatively lower weights (or no weights) to false
positive and false negative pairs;

Lw =
1

N

N∑
k=1

[ℓ̄(2k − 1, 2k) + ℓ̄(2k, 2k − 1)], ℓ̄(i, j) = − log
w+

i si+

w+
i si+ +

∑2N
k=1 I[k ̸=i,j]w

−
iksik−

(1)

One problem with this formulation, however, is that it is not realistic to compute and store all the
weights in the learning process. This precaution arises from the quadratic growth in the number of
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weights to be calculated as the training data size increases. Furthermore, the random nature of our
augmentation method further adds complexity to the pre-calculation and storage of these weights.

A straightforward baseline for calculating these weights can be envisioned as follows: we can consider
these weights in a binary fashion, with all weights initialized to one. In the learning process, if for
some positive pairs the similarity score falls below a specified threshold, we set the corresponding
weights to zero, marking these positive pairs as false positives. Conversely, if for some negative
pairs the similarity score exceeds a threshold, we set the associated weights to zero, indicating false
negatives. A challenge associated with this baseline method, however, lies in the establishment of a
rigid similarity threshold to create a binary division of weights between zero and one. This approach
proves less suitable for our molecular contrastive task as these heuristically chosen thresholds might
not be optimal.

To address this challenge, we propose a principled Bayesian approach that allows adaptively inferring
the optimal weights by Bayesian inference. Specifically, we treat the weights to be random variables
and assign appropriate priors to them. We consider two types of priors: a Bernoulli prior to model
weights as binary random variables and a Gamma prior to represent them as positive values. For
simplicity, we model positive weights using the Gamma distribution and negative weights using either
the Gamma distribution or the Bernoulli distribution, as expressed by the following formulas:

Option 1 - Gamma priors for continuous weighting:

w+
i ∼ Gamma(a+, b+), w

−
ik ∼ Gamma(a−, b−).

Option 2 - Bernoulli priors for selective weighting:

w+
i ∼ Gamma(a+, b+), w−

ik ∼ Bernoulli(ā−).

here, a+, b+, a− and b−are shape and rate parameters for Gamma distribution and ā− is the
probability parameter for Bernoulli distribution.

With our reformulation, we can define a joint distribution over the global model parameter and local
random weight variables w+

i and w−
ik, as:

p
({

w+
i

}
,
{
w−

ik

}
,θ;D

)
∝

∏
xi∈D

w+
i si+

w+
i sij+ +

∑K
k=1 w

−
iksik−

p({w+
i })p({w

−
ik})p(θ). (2)

One problem with the above formulation, however, is that posterior inference of the weights is
challenging, due to the lack of convenience posterior distributions.

Fortunately, inspired by [27], we can introduce an augmented random variable ui that is associated to
data point xi. Consequently, we can define an augmented joint posterior distribution of the random
variables θ,u,w, denoted as p

({
w+

i

}
,
{
w−

ik

}
,θ | D

)
1, to be

p(θ,u,w | D) ∝
∏

i:xi∈D
w+

i si + e−uiw
+
i si+

∏
k

e−uiw
−
iksik−p

({
w+

i

})
p
({

w−
ik

})
p(θ), (3)

where u ≜
{
u1, u2, · · · , u|D|

}
and w ≜

{
w+

i

}
∪
{
w−

ik

}
. It is worth noting that this joint distribution

is equivalent to the original distribution (2), because (2) is recovered if one marginalize out the
auxiliary random variables u in (3). In other words, optimization thought (3) is equivalent to
optimization over (2). Consequently, we can perform learning and inference based on the augmented
posterior of p(θ,u,w | D), which preserves a much convenient form for posterior inference. In the
following, we propose an efficient algorithm based on stochastic expectation maximization (stochastic
EM) to alternatively infer the local random variables w and optimize the global model parameter θ.

2.3 Efficient Inference and Learning with Stocastic Expectation Maximization

We propose a stochastic EM algorithm for efficient inference and learning of our model. Stochastic
EM [31] is a stochastic variant of the EM algorithm, which is an iterative method for finding the

1In the sense that marginalizing over the augmented random variables
{
w+

i

}
and

{
w−

ik

}
in

p
(
θ,U,

{
w+

i

}
,
{
w−

ik

}
| D

)
gives back to the original p

({
w+

i

}
,
{
w−

ik

}
,θ;D

)
. Thus, learning and infer-

ences on the two forms are equivalent.

5



maximum likelihood of model parameters in statistical models when data is only partially, or when
model depends on unobserved latent variables [35].

In our setting, the objective of stocastic EM is to maximize the posterior in equation 4. The basic idea
is to alternatively 1) optimizing model parameter θ with fixed (u,w) and 2) sampling (u,w) with
fixed θ. To this end, we follow standard procedures in stochastic EM to divide the learning into three
steps: Simulation, Stochastic Expectation, and Maximization. Specifically, simulation corresponds to
sampling local random variables u and w for a batch of data; stochastic expectation then uses the
sampled auxiliary random variables to update the model parameter θ by maximizing a stochastic
objective Q(θ), defined as: Qt+1(θ) = Qt(θ) + λt (log p(θ,u,w | D)−Qt(θ)) at iteration t+ 1,
where {λt} is a sequence of decreasing weights. And maximization corresponds to maximizing the
stochastic objective constructed in the previous step. In the following, we detail the three steps.

Simulation Given the joint posterior distribution in equation 3 and the current batch of data, the
posterior distributions of the local random variables u and w can be directly read out, which simply
follow Gamma or Bornoulli distributions of the following forms:

ui |
{
w+

i , w
−
ik,θ

}
∼ Gamma

(
au, bu + w+

i si+ +
∑

w−
iksik−

)
,∀i, and

w+
i | {u,θ} ∼ Gamma (1 + a+, uisi+ + b+) , and

Option 1: w−
ik | {u,θ} ∼ Gamma (a−, uisik− + b−) ,∀i, k

Option 2: w−
ik | {u,θ} ∼ Bernoulli

(
a−e

−uisik−

1− a− + a−e−uisik−

)
Stochastic Expectation We then proceed to calculate the stochastic expectation based on the sim-
ulated local random variables above. For notation simplicity, we define Q0(θ) = 0. Then we can
reformulate Qt+1(θ) by decomposing the recursion, resulting in

Qt+1(θ) =

t∑
τ=0

λ̃τ log p (θ,uτ ,wτ | Dτ ) , where λ̃τ ≜ λτ

t∏
t′=τ+1

(1− λt′) , (4)

where τ indexes the minibatch and the corresponding local random variables at the current time τ .

Algorithm 1 Contrastive Learning with Stochastic EM
1: Initialize θ; set t = 1
2: for a batch of molecules in loader do
3: Augment each molecule xi into a pair (xi,x

′
i)

4: Calculate positive/negative similarity scores s+ and s−

for all the molecule pairs
5: Initialize all the weights w+ and w− to be one
6: for k = 1 to iter [4 in practice] do
7: Sample u and w according to distributions
8: end for
9: Calculate the weighted contrastive loss in equation 2 with

the sampled w on the current batch of data
10: Update the model parameter by stochastic gradient de-

scent with the calculated weighted contrastive loss
11: t = t+ 1
12: end for

Maximization The stochastic
expectation objective (4) pro-
vides a convenient form for
stochastic optimization over
time, similar to online optimiza-
tion (Bent & Van Hentenryck,
2005). Specifically, at each time
t, we can initialize the param-
eter θ from the last step, and
update it by stochastic gradient
ascent on the log-likelihood,
log p (θ,uτ ,wτ | Dτ ) calcu-
lated from the current batch of
data. To reduce variance, we
propose to optimize a marginal
version by integrating out
uτ from p (θ,uτ ,wτ | Dτ ),
which essentially reduces to our
original weighted contrastive loss in equation (1). With the above steps, it is ready to optimize the
model by stochastic EM. The detailed steps are described in the Algorithm 1.

3 Related works
Contrastive Learning As a popular self-supervised learning paradigm, contrastive learning focuses
on learning semantically informative representations for downstream tasks [13-16]. The most widely
used loss function is InfoNCE [17] which pulls in the representations between positive sample pairs
while pushing away that between negative sample pairs.
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Molecular Representation Learning Representation learning on large-scale unlabeled molecules
attracts much attention recently. SMILES-BERT [18] is pretrained on SMILES strings of molecules
using BERT. Subsequent works are mostly pretraining on 2D molecular topological graphs [19,20].
MolCLR [9] applies data augmentation to molecular graphs at both node and graph levels, using
a self-supervised contrastive learning strategy to learn molecular representations. Further, several
recent works try to leverage the 3D spatial information of molecules, and focus on contrastive or
transfer learning between 2D topology and 3D geometry of molecules. For example, GraphMVP
[10] proposes a contrastive learning GNN-based framework between 2D topology and 3D geometry.
GEM [22] uses bond angles and bond length as additional edge attributes to enhance 3D information.
Uni-Mol [21] is a universal 3D molecular pretraining framework that significantly enlarges the
representation ability and application scope in drug design.

Noisy Pairs in Contrastive Learning Noisy data pair problem have been found and studied in visual
contrastive learning community. NLIP [28] enforces the pairs with larger noise probability to have
fewer similarities in embedding space to improve the model training. [29] apply noise estimation
component to adjust the consistency between different modalities for the action recognition task.
RINCE [30] uses a ranked ordering of positive samples to improve InfoNCE loss.

Stochastic Expectation Maximization Stochastic EM [31] stands as a pivotal algorithm in machine
learning and probabilistic modeling for large-scale Bayesian inference. Building upon the foundations
of the classical Expectation-Maximization (EM) algorithm [32], Stochastic EM offers an efficient
solution for parameter estimation in situations involving vast datasets or latent variables, e.g., to
maximize the log-likelihood of p(z,D | θ), where D is the dataset, z is the local random variable
and θ is the global model parameter. By leveraging the power of mini-batch sampling, Stochastic EM
strikes a balance between computational scalability and estimation accuracy. It has found widespread
utility in various domains, including clustering [33], topic modeling [34], and latent variable modeling
[35], making it an indispensable tool to cope with complex probabilistic models and extensive data
and a natural fit to our problem.

4 Experiments
We evaluate our method on molecular property prediction tasks. Our approach is designed to be a
versatile component that can be seamlessly integrated with various molecular property prediction
datasets and models. In this study, we integrate our model into three different existing models:
Uni-Mol [21], I-MolCLR [45], Equiformer [46] and assess its performance on three distinct datasets:
MoleculeNet [11], MoleculeNet without chirality, and the QM9 [44] dataset. For all experiments, we
provide detailed experiment settings in Appendix C.

4.1 The MoleculeNet Dataset
MoleculeNet [11] is a popular benchmark for molecular property prediction, including datasets
focusing on different molecular properties, from quantum mechanics and physical chemistry to
biophysics and physiology. For a fair comparison, we integrated our method into Uni-Mol [21]
framework. We applied both the Gamma and Bernoulli versions of our method, as shown in Table
1. In our contrastive learning framework, we used the representation of the [CLS] token as the
final encoded representation, representing the entire molecule. Additionally, we incorporated the
original three-dimensional recovery loss as an extra loss function. The model was trained on the same
large-scale dataset, including 19 million molecules and 209 million conformations, as in the original
paper. We used the same evaluation metrics: ROC AUC for classification tasks and RMSE and
MAE for regression tasks.

As shown in Table 1 and 2, our method outperforms Uni-Mol [21] and GEM [22], the current
state-of-the-art methods, with an average gain of 1.3 percent in classification tasks and 7.6 percent in
regression tasks. This substantiates that our approach facilitates more flexible training with a higher
tolerance for false positive and false negative data pairs, thereby enhancing the model’s performance
in molecular representation learning.

4.2 Non-Chirality version MoleculeNet
In order to make a fair comparison with I-MolCLR [45], we also integrated our method into MolCLR
[9] framework. MolCLR and I-MolCLR are 2D based methods, their experiments are conducted
on different version of MoleculeNet dataset that does not consider chirality. We adopted the same
dataset, augmentation, GNN-based encoder and other settings. As shown in Table 3, our method
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Table 1: ROC AUC on molecular property prediction classification tasks (Higher is better)
Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV
# Molecules 2039 1513 1478 7831 8575 1427 41127 437929 93078
# Tasks 1 1 2 12 617 27 1 128 17
D-MPNN [52] 71.0 80.9 90.6 75.9 65.5 57.0 77.1 86.2 78.6
Attentive FP [53] 64.3 78.4 84.7 76.1 63.7 60.6 75.7 80.1 76.6
N-GramRF [54] 69.7 77.9 77.5 74.3 − 66.8 77.2 − 76.9
N-GramXGB [54] 69.1 79.1 87.5 75.8 − 65.5 78.7 − 74.8
PretrainGNN [55] 68.7 84.5 72.6 78.1 65.7 62.7 79.9 86.0 81.3
GraphMVP [10] 72.4 81.2 79.1 75.9 63.1 63.9 77.0 − 77.7
GEM [22] 72.4 85.6 90.1 78.1 69.2 67.2 80.6 86.6 81.7
MolCLR [9] 72.2 82.4 91.2 75.0 − 58.9 78.1 − 79.6
Uni-Mol [21] 72.9 85.7 91.9 79.6 69.6 65.9 80.8 88.5 82.1
Ours (Gamma) 76.7 88.2 89.4 80.1 69.9 63.6 83.0 89.6 79.0
Ours (Bernoulli) 73.7 84.3 85.3 79.8 68.8 64.9 80.8 89.3 82.9

Table 2: Performance on molecular property prediction regression tasks (Lower is better)
Datasets ESOL FreeSolv Lipo QM7 QM8 QM9 MEAN (RMSE) MEAN (MAE)
# Molecules 1128 642 4200 6830 21786 133885
# Metric RMSE↓ MAE↓
D-MPNN [52] 1.050 2.082 0.683 103.5 0.0190 0.00814 1.272 34.509
GROVERlarge [56] 0.895 2.272 0.823 92.0 0.0224 0.00986 1.33 30.67
MolCLR [9] 1.271 2.594 0.691 66.8 0.0178 - 1.519 -
GraphMVP [10] 1.029 - 0.681 - - - - -
GEM [22] 0.798 1.877 0.660 58.9 0.0171 0.00746 1.112 19.642
Uni-Mol [21] 0.788 1.480 0.603 41.8 0.0156 0.00467 0.957 13.940
Ours (Gamma) 0.775 1.420 0.590 38.5 0.0142 0.00395 0.928 12.839
Ours (Bernoulli) 0.664 1.358 0.626 55.6 0.0154 0.0056 0.883 18.541

outperforms I-MolCLR on 7 out of 9 downstream tasks and got an average of 2 points increase on
non-chirality MoleculeNet classification datasets.

Table 3: Comparison against i-MolCLR on non-chirality MoleculeNet dataset

Without Chirality BBBP BACE ClinTox Tox21 SIDER HIV MUV MEAN
I-MOLCLR [45] 76.4 88.5 95.4 79.9 69.9 80.8 90.8 83.1

Our Method 78.3 94.8 91.4 84.9 72.7 85.5 88.0 85.1

4.3 QM9 Dataset
The QM9 dataset [44] is another popular dataset in molecular property prediction, it consists of 134k
small molecules, and the goal is to predict their quantum properties. For this dataset, we choose
equiformer [46] as a baseline method. The data partition we use has 110k,10k,and 11k molecules in
training, validation and testing sets. We use both our contrastive loss function and original minimize
mean absolute error(MAE) as training objectives.

As shown in 4, we get state of the art result in 8 out of 12 baselines. The increase is relatively
subtle compared with other dataset, we argue that this is due to the fact that QM9 is relatively small
regarding number of molecules in training set, and also the saturation on performance achieved by
different methods.

4.4 Ablation Study
Distribution of similarity scores Our method is largely motivated by the observation that previous
MCL approaches neglect potential semantic dissimilarity between positive samples and that account-
ing for this phenomenon can improve learned molecule representations. In Figure A(See Appendix
A), we plot the distribution of similarity scores for both positive and negative samples. Figure A left
reveals that our method yields larger similarity scores with lower variance for positive pairs compared
to MolCLR [9] baseline which uses standard contrastive learning method. Figure A right reveals that
our method also mitigates the false negative problem in standard CL. It also shows that our method
sometimes assigns lower similarity scores to positive pairs. While it may seem counter intuitive
to assign lower similarity scores to positive samples, we argue that doing so is the very reason our
method captures dissimilarity between positive pairs. By allowing some degree of alignment between
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Table 4: Experiment results on QM9 dataset

Methods α ∆E E homo E lumo µ Cv G H R∧2 µ µ0 ZPVE
GraphCL [47] 0.066 45.5 26.8 22.9 0.027 0.028 10.2 9.6 0.095 9.7 9.6 1.42
JOAOv2 [48] 0.066 45.0 27.8 22.2 0.027 0.028 9.9 9.2 0.087 9.8 9.5 1.43
3D-MGP [49] 0.057 37.1 21.3 18.2 0.020 0.026 9.3 8.7 0.092 8.6 8.6 1.38

Transformer-M [50] 0.041 27.4 17.5 16.2 0.037 0.022 9.63 9.39 0.075 9.41 9.37 1.18
Equiformer [46] 0.046 30 15 14 0.011 0.023 7.63 6.63 0.251 6.74 6.59 1.26

Ours 0.037 24.2 21.1 13.7 0.022 0.022 6.2 6.31 0.082 7.22 9.40 1.09

the right set of negative examples, our method is able to minimize the inconsistencies between shared
context of related positives and negatives. This in turn allows us to learn an overall more coherent
representation space, resulting in increased robustness and downstream performance.

Comparisons with the Standard Contrastive Learning We conducted an ablation study to show-
case that our method of probablistic framework of contrastive learning has already achieved strong
emperical results and demonstrate the improvement brought by adding the 3D-aware loss functions
on MoleculeNet [11] classification dataset. We first examined the effect of adding the probabilistic
framework to the standard contrastive loss, and the 3D-aware loss functions as implemented in
Uni-Mol [21].

Table 5: Ablation Study on MoleculeNet Classification Datasets

BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV MEAN
Standard CL 69.3 81.5 84.1 75.5 63.4 58.9 78.3 84.1 72.5 75.2

CL + 3D Loss 75.1 86.8 87.9 78.9 68.5 62.8 81.8 88.0 77.1 78.1
CL + Probabilistic Framework 74.1 86.3 88.2 79.5 68.2 63.1 82.5 88.4 77.1 78.6

CL + Both 76.7 88.2 89.4 80.1 69.9 63.6 83.0 89.6 79.0 80.1

Table 6 presents the results of our ablation study. Incorporating the probabilistic framework resulted
in a great improvement of 3.4-point increase in ROC-AUC, significantly enhances the model’s
performance. On the other hand, introducing the additional loss component led to an increase in
ROC-AUC by 2.9 points, demonstrating its secondary role in enhancing the model’s performance.
When we adopt both of them, we can get the final ROC-AUC of 80.1 average on MoleculeNet
classification datasets.

Hyperparameters We also conducted an ablation study to determine the optimal hyperparameters
(e.g., a+, a−) on MoleculeNet classification datasets. We selected a+, a−, b+, and b− from the
range [1, 5, 10]. Table 6 indicates that our method achieves the best performance with a+ = 5 and
a− = b+ = b− = 1. Tuning different hyperparameters affects performance, with an increase in a+
from 1 to 5 leading to a 1.6 percent performance gain.

Table 6: Abalation studies on hyperparameters for MoleculeNet classification tasks

a+ 1 5 10 5 5 5 5
a− 1 1 1 1 1 5 10
b+ 1 1 1 5 10 5 5
b− 1 1 1 1 1 5 10

Avg. ROC-AUC (%) 78.8 80.4 79.6 79.3 80.0 79.4 79.3

5 Conclusion
In this paper, we investigate an important yet unnoticeable limitation of molecular contrastive learning,
where augmented graph data come with false positive and false negative data pairs. As a remedy, we
propose a principled solution to molecular contrastive learning by reformulating it into a probability
framework and introducing random weights for data pairs. With a Bayesian data augmentation
technique, the random weights can be efficiently inferred via sampling, and the model parameter can
be effectively optimized via stochastic expectation maximization.

The effectiveness of our innovative approach has been proven through rigorous evaluations on
multiple molecular property prediction and protein-ligand binding pose benchmarks. The results also
showcase the wide-ranging applicability and improved robustness of our proposed method over both
standard contrastive learning method and non-contrastive learning method for learning molecular
representations.
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We believe our method is a valuable addition to the literature on molecular contrastive representation
learning, which can further boost the performance of state-of-the-art molecular representation learning
models for drug design.
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A Similarity Score Distribution

Figure 3: Similarity Scores – Similarity scores distribution for negative pairs in joint space after
pre-training with original MolCLR loss and our proposed loss is provided. Compared to Using
pretrained MolCLR model, our method yields similarity scores with lower mean and lower variance
for negative pairs. While MolCLR have two peaks of negatives similarity scores around 1 and 2.7,
our method concentrates them at only one peak of 1.Our method yields similarity scores with higher
mean and lower variance for positive pairs. Our method concentrates at higher levels as it allows for
some degree of semantic dissimilar between positives. The similarity scores are dot similarity, they
are not normalized to enhance the difference for visual purposes.

B Limitations

In this section, we discuss the limitations of our proposed EM-based algorithm for molecular contrastive learning.

B.1 Assumptions and Robustness

Our approach relies on several strong assumptions, such as the independence of molecular features and the
noisiness nature of the input data. In practice, these assumptions may be violated, potentially affecting the
performance and robustness of the model. For instance, correlated features could lead to biased estimates of
weights, while unnoisy data might degrade the necessity to apply our method in learning representations. Future
work could explore methods to relax these assumptions and enhance the model’s robustness to such violations.

B.2 Scope of Claims

The empirical results presented in this paper are based on experiments conducted on a specific set of datasets:
MoleculeNet and QM9. While these datasets are commonly used in molecular machine learning research, they
may not fully represent all possible application domains. Consequently, the generalizability of our findings to
other datasets or real-world scenarios might be limited. Further validation on a broader range of datasets is
necessary to confirm the wide applicability of our approach.

Also, one limitation of our method is that the performance gains brought by the proposed architectural im-
provements can depend on datasets and tasks. For small datasets like QM9, the performance gain is not
significant.

B.3 Privacy and Fairness

While our work does not specifically address issues of privacy and fairness, these are important considerations
for any machine learning model, especially those used in sensitive domains such as healthcare. The potential for
bias in molecular datasets, as well as privacy concerns related to molecular data, are areas that require further
exploration. Ensuring that our model adheres to ethical standards and mitigates bias is an avenue for future work.

By acknowledging these limitations, we aim to provide a transparent account of our research and encourage
future studies to build upon and address these challenges.
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Table 7: hyperparameter search space for MoleculeNet dataset

Hyperparameter Small Large HIV
Learning rate [5e− 5, 8e− 5, 1e− 4, 4e− 4, 5e− 4] [2e− 5, 1e− 4] [2e− 5, 5e− 5]
Batch size [32, 64, 128, 256] [128, 256] [128, 256]
Epochs [40, 60, 80, 100] [20, 40] [2, 5, 10]
Pooler dropout [0.0, 0.1, 0.2, 0.5] [0.0, 0.1] [0.0, 0.2]
Warmup ratio [0.0, 0.06, 0.1] [0.0, 0.06] [0.0, 0.1]

C Training details for experiments

C.1 MoleculeNet dataset

We report the detailed hyperparameters setup of during pretraining in 7. Molecular pretraining runs on 4 A6000
GPUs, and the training time is about 48 hours.

C.2 MoleculeNet non-charality

In pre-training, the GNN encoder embeds each molecule graph into a 512-dimension representation h. The
projection head is modeled by an MLP with one hidden layer maps h into 256-dimensional latent vector
z.ReLU is implemented as the non-linear activation function. The whole model is pre-trained for 50 epochs
with batch size 512 . We use Adam optimizer with an initial learning rate 5 × 10−4 and the weight decay
1× 10−5. Additionally. cosine learning rate decay is performed during pre-training.

During fine-tuning, we replace the projection head with a randomly initialized MLP which maps the repre-
sentation h into the desired property prediction while keeping the pre-trained GNN encoder. The pre-trained
model is trained individually for 100 epochs on each task from the benchmarks. We perform a random search
of hyperparameters on validation sets and report the results on test sets. For each benchmark, we run three
individual runs and report the average. The whole model is implemented on PyTorch Geometric.

C.3 QM9 dataset

We follow the data partitioning scheme used by Equiformer. For the tasks involving µ, α, εHOMO, εLUMO,∆ε,
and Cν , our experimental setup includes a batch size of 64, training for 300 epochs, a learning rate of 5× 10−4,
and Gaussian radial basis functions with 128 bases. The architecture comprises 6 Transformer blocks, a weight
decay of 5× 10−3, and a dropout rate of 0.2. Mixed precision training is employed for these tasks.

For the R2 task, we use a batch size of 48, 300 epochs, a learning rate of 1.5 × 10−4, Gaussian radial basis
functions with 128 bases, 5 Transformer blocks, a weight decay of 5× 10−3, and a dropout rate of 0.1, training
in single precision.

The ZPVE task also uses a batch size of 48, 300 epochs, a learning rate of 1.5× 10−4, Gaussian radial basis
functions with 128 bases, 5 Transformer blocks, a weight decay of 5× 10−3, and a dropout rate of 0.2, with
single precision training.

For the tasks of G,H,U , and U0, the setup includes a batch size of 48, 300 epochs, a learning rate of 1.5×10−4,
Gaussian radial basis functions with 128 bases, 5 Transformer blocks, no weight decay, and no dropout, with
single precision training.

We used a single A6000 GPU for training, with the mixed precision tasks taking 81 GPU-hours and single
precision tasks taking 151 GPU-hours. The model contains 11.20 million parameters for 6-block configurations
and 9.35 million parameters for 5-block configurations.

D Protein-ligand binding task

We also conducted the protein-ligand binding pose prediction task. This is one of the most important tasks in
structure based drug design. The task is to predict the complex structure of a protein binding site and a molecular
ligand. We need to consider how ligand lays in the pocket, that is, the 6 degrees (3 rotations and 3 translations)
of freedom of a rigid movement.

Following Uni-Mol [21], the molecular representation and pocket representation are firstly obtained from their
own pretraining models by their own conformations; then, their representations are concatenated as the input of
an additional 4-layer Transformer decoder, which is finetuned to learn the pair distances of all heavy atoms in
molecule and pocket. Then, with the predicted pair-distance matrix as a scoring function, we first randomly
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place the ligand and then optimize the coordinates of its atoms by directly back-propagation the loss between
current pair-distance and predicted pair-distance.

For the training data used in finetuning, we use PDBbind General set v.2020[38] (19,443 complexes).

We evaluate our method using the metric binding pose accuracy. Specifically, we keep the pocket conformation
fixed, while the ligand conformation is fully flexible. We evaluate the RMSD(root mean squared distance)
between the prediction and the ground truth. Following previous works, we use the percentage of results below
predefined RMSD thresholds as metrics.

Table 8: Performance on binding pose prediction.

Methods 1.0 Å 1.5 Å 2.0 Å 3.0 Å 5.0 Å
Autodock Vina 44.21 57.54 64.56 73.68 84.56
Vinardo 41.75 57.54 62.81 69.82 76.84
Smina 47.37 59.65 65.26 74.39 82.11
Autodock4 21.75 31.58 35.44 47.02 64.56
Uni-Mol [21] 43.16 68.42 80.35 87.02 94.04
Ours (Bernoulli) 48.77 70.18 78.95 85.26 94.04
Ours (Gamma) 45.61 69.47 80.70 88.42 96.84

We compare our method with current state-of-the-art baselines, including Autodock Vina[39,40], Vinardo[41],
Smina[42], Autodock4[43] and Uni-Mol[21].

The binding pose accuracy results are shown in Table 3. Not surprisingly, our model again outperforms all the
baseline methods, achieving state-of-the-art results with our Gamma-prior version model.
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